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A procedure is proposed fo" calculation of a class of problems on heat transfer in multilayer structures with 
generalized nonideal contact. The procedure is iUustrated by calculating the heat transfer in a stack of plates 
with liquids moving in gaps between the plates. 

A typical feature in the design of many technological apparatuses of heat exchangers, power plants, aircraft 

and rocket technology, etc. is the presence of multilayer components subjected to thermal and mechanical loads. 

Such components are characterized by different layer thicknesses, different thermophysical characteristics, depend- 

ence on temperature in the general case, as well as by thermal resistances at the joints of layers. 

Contact thermal resistance depends on many factors: the mean temperature in the zone of contact, the load 

on the contacting surfaces, the magnitude of the heat flux, the thermophysical properties of the medium occupying 

the intercontact gaps, the thermophysical and mechanical properties of the contacting surfaces, etc. [1, 2 ]. 

In the general case, the zone of contacting layers can contain interlayers of one or another kind of substance 

(a thin layer of a lubricant, a layer of a moving liquid (heat exchangers, probes) and so on) that can undergo 

different changes (physicochemical transformations, evaporation or solidification, convective transfer, etc.) with a 

change in the surface temperature of the layers which are accompanied by heat release or absorption. Under these 

conditions, there are temperature and heat-flux discontinuities with passage from layer to layer. 

Considering the presence of heat-flux discontinuities at the joints of layers, it is reasonable to rewrite the 

equation relating a temperature discontinuity to the heat flux in a form that is symmetrical relative to the heat 

fluxes. Then the equations at the joints of layers can be written in general form as the following equalities 

Tj - T-  = R/ )t--~r } j + OT - 

(2t~rr)j+ ( O T ) - = w j -  2-~r j , r r j_l ,  j 1, k 1 . =  = - 

Here Rj +, Rj- are the coefficients of the generalized contact thermal resistance at the boundary of the j + l- th and 

j-th layers. 

In the special case of R I  =Rj- = I/2Rj and wj = 0, the problem on heat transfer in a multilayer structure 

with nonideal thermal contacts has the usual formulation [2 ]. Generalized conditions (1) make it possible within 

the framework of a single algorithm to solve a wide class of problems on heat transfer complicated by various 

accompanying processes between the surfaces of contacting layers. In this case, both direct thermal and mechanical 

contacts of these surfaces and their thermal contact via a heat-transfer agent can take place. In the latter case, 

direct mechanical contact of these surfaces can be absent. 

To formulate a unified algorithm and develop software for numerical solution of a wide class of problems, 

the equations describing unsteady heat transfer at internal points of layers and the boundary conditions over the 

outer surfaces of a structure can be written in the following unified form 
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O-r = c / ~ + -~r "~r + ~z ~z + e / , j= l , k , (2) 

(.) + (.) aT  (.) (3) 
bl.4 b2.5 ~ = b3.6 

at r = r l  and r= rk+ l  z.o < z < zl; z = zo and z " Zl rl < r < rk+l.  

By formulating algorithms for each particular case or expressions for determination of the coefficients of 

differential equations, parameters of generalized nonideal contact, and boundary conditions, one can consider a 

large group of problems on heat transfer in multilayer structures within the framework of a single methodological 

approach. In particular, using various methods to determine the coefficients of boundary conditions, we can consider 

heat transfer in external flow around a surface, in gas and liquid flows in tubes and channels, and in the presence 

of phase changes, physicochemical transformations, etc. 

In what follows the problem described by system of differential equations (2), conditions (1) at the 

boundaries of contacting layers, and boundary conditions (3) will be spoken of as the problem on heat transfer in 

a multilayer structure with generalized nonideal thermal contact or with generalized thermal resistance. 

To solve numerically the problem on heat transfer in a multilayer structure with generalized nonideal 

contact, we can formulate a homogeneous algorithm. For this, use is made of finite-difference schemes of implicit 

approximation with absolute time stability. 

Using one or another  scheme for finite-difference approximation of Eqs. (2) to determine the temperature 

values at the inner nodes of the difference network that do not lie at the boundaries of layers, we arrive at a system 

of algebraic equations with a three-diagonal matrix [3 ] 

AiTi+l + BiTi  + C iT i - I  = D i .  (4) 

The  coefficients A, B, C, D of these equations are expressed in terms of the coefficients of initial differential 

equations (2). 

To close sys tem of Eqs. (4), it is necessary  to supplement  it with equations that are a difference 

approximation of boundary  conditions (3) and the relations at the joints of layers (1). 

On the surface separating these layers, two nodes i+ and i - ,  located, respectively, in the (j + 1)-th and 

j- th layers, are introduced instead of the i-th node on this surface. In the case of generalized nonideal thermal 

contact, r + = r 7 + 6j, where c~j is the gap between the adjacent surfaces of the j- th and (./+ l ) - th  layers. 

For approximation of Eq. (1) at the iFth node on the boundary surface of layers, fictitious nodes are 

intreduced which lie on the extended j-th and (j + l ) - th  layers, respectively. After elimination of the temperature 

values at the fictitious nodes, from the difference approximation of Eqs. (1) with the aid of (4) we obtain the 

following two equations: 

A i  Ti+l + Bi Ti + Ci -  T i - I  = D-i , i = i j ,  j = 1, k - I ; 
(5) 

+ + + + + 

Ai Ti+l + Bi Ti + Ci T i - I  = Di , i = i], j =  1, k - 1 . 

The coefficients of these equations are expressed in terms of the parameters of generalized nonideal contact 

(1) and the coefficients of Eqs. (4) for i = ij - 1 and i = ij + 1. 
Similarly, using fictitious nodes and relations (4) at i = 1 and i -- k for the finite-difference approximation 

of the boundary  conditions, an absolutely stable implicit scheme can be proposed: 

TI .N = LI ,N T2 ,N-I  + KI ,N,  (6) 

where the coefficients LI,  N and kl ,  N a r e  expressed in terms of the coefficients of Eqs. (4) for i = 1, N and the 

coefficients of boundary  conditions (3). 
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As analytical and numerical studies show, this approximation, unli T.'̀  those usually employed I3, 4 I, is 

absolutely stable and allows results to be obtained under conditions of intense external heat supply. 

Thus, for temperature determination we have system of difference equations (4), (5), and (6), which 

approximates the initial mathematical problem with an error of order O ( A r  2, At). 

In the general case, the parameters p, c, ,l and, consequently, the coefficients A, B, C, D depend on T, 

i.e., this system is linear and for its solution an iteration process is used, at each cycle of which the coefficients of 

the equations are calculated for the temperature values taken from the previous iteration, and the linear system of 

equations is solved. 

It is easy to see that in the case of a single-layer structure or a multilayer structure with ideal thermal 

contact between layers, A~" = A 7 . . . . .  D + = D~ 7. Then, with allowance for T + = Ti-, Eqs. (5) degenerate into one 

equation and system of Eqs. (4)-(6) becomes a system of algebraic equations with a three-diagonal matrix that is 

effectively solved by the elimination method [5, 6 ]. Problems of finite-difference approximation of the conditions 

at the layers boundaries in these cases are discussed in [31. 

However, in the general case, for the problem with generalized nonideal contact T + ~ T 7 and  

A + ~ A~ . . . . .  D + ~ Di-, and it is necessary to solve the complete system of Eqs. (4)-(6), whose matrix differs 

from the three-diagonal one. This prevents direct use of the elimination method. 

In order to employ this method, we reformulate this system of equations into two systems of equations: a 

system of equations for Tj, T~- and relations expressing T~ in terms of T + and T i_ I. 
The second system, consisting of k - 1 equations, can be derived from (5) after elimination of Ti+ 1 from 

it. After trivial transformations we arrive at 

+ 
T7 = KiTi + LiTi-I  + Ni" 

Eliminating Ti- from Eq. (4) with the aid of (7) at i = i] - 1 and combining like terms, we obtain 

T + - -  . A / j - I T q - 2  + Bi j - lTq-1  + -Cij-I ij = Dij-I 

(7) 

(8) 

Thus, we have system of Eqs. (4), (6), the second equation of (5), and Eq. (8) written in the unknown T i (the 

temperature at the inner nodes of the difference network) and T 7 (the temperature at a point on the lower surface 

in the j + 1-th layer). 

In each iteration cycle this system of equations is a system of linear algebraic equations with a three- 

diagonal matrix that can be solved by the three-point elimination method. After Ti, T + determination, Ti- on the 

upper surface of the j-th layer is determined from Eq. (7). 

To illustrate the adopted approach, we will consider the problem of heat transfer calculation in a stack of 

plates with a liquid flowing between the latter. Under such conditions the following conditions will be fulfilled on 

the contacting surfaces of adjacent plates: 

e r  - = ( r 7  - r / j ) ,  r,+, ; - - ~ r j  
(9) 

OT I + = + + 
- aT;r )  j ( r  7 - rzj ) ,  r = r j + l ,  j =  i ' k .  

After trivial transformations that reduce (9) to a form corresponding to generalized nonideal contact (1), 

we arrive at relations allowing determination of the generalized nonideal contact parameters R 7, R~-, co i 

aj aj 

which are independent of the method used for determination of heat transfer coefficients. 
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Fig. 1. Schemes of liquid flows: 1-6, Nos. of schemes; kl - kS, Nos. of 

channels. 

Thus, relations (10) determine the generalized thermal resistance parameters when the adjacent surfaces 

of the elements of a multilayer structure are separated by a moving heat-transfer agent. 

To calculate the temperature of the heat-transfer agent, we use a quasi-one-dimensio,,al model [1 l: 

j =  l , k -  1, z o < z < z  1. 

(ll)  

To solve this equation numerically, the absolutely stable running-count difference scheme is applied using finite 

differences oriented against the flow, which requires consideration of the flow direction in each channel: 

= ~jj - (a i + ct.-[) r f i + a  i Tj  + a  i r j  . (12) 

Data in the inlet sections of the channels are either given or determined when solving the problem with 

allowance for the specific features of liquid inflow into the channel considered, depending on the specific diagram 

of the structure. 

To construct a formalized algorithm that is independent of the number of channels and the flow diagrams 

of the heat-transfer agents, a matrix is introduced to formalize the conditions at joints, each row of which contains 

information about the parameters of the heat-transfer agent flow in the corresponding channel. 

In the first element of a row, a parameter j s  is assigned to indicate the number of the layer above which 

the fluid flows. Introduction of this parameter allows a calculation to be made within the framework of a single 

algorithm when the structural elements between two layers of fluid represent a layer of the same material and also 

when an element itself consists of several layers, the thermal resistance of which is different. If all the structural 

elements between two layers fluid are homogeneous, then j s  is equal to the number of the current matrix row. In 

the second element, the number of the channel, i.e., the parameter if, out of which the fluid flows is prescribed. 

In the third, the parameter k f  is specified, i.e., the number of structure channels through which the fluid has passed 

prior to entering the channel under consideration. In the fourth, Uin, the specific mass flow rate of the fluid. In the 

f i f th ,  Tf, in , the fluid temperature in the inlet section. In specifying the flow rate, a sign is used to indicate for the 

flow direction. The quantities t/in and Zi,in are prescribed concretely for the fluid with k f  "= 0. At k f  ~ 0 these 

parameters are determined when solving the problem numerically. 

To illustrate the possibilities of the formulated algorithms, we solved the problem on heating (cooling) of 

a liquid in a structure consisting of six layers. Flow diagrams of the liquids are given in Fig. 1. For compound 

schemes (1-4), the temperature of the fluids flowing into two separate channels, Tf, in is lS0~ the inlet temperature 

of the fluid flowing, as in a coil, in three other communicating channels is 10~ In addition to these schemes, we 

also considered, for comparison sake, simple schemes containing two channels (5, 6). 

The results reported below were obtained for the following parameters: the channel length L = 2.5 m, the 

wall thickness of the structure hj = 3 mm, and the width of the channels in which fluid flows is 8j = 1.5 mm. The 
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Fig. 2. Tempera tu re  variation of heated fluid at s t ructure  outlet.  The  number  

of the lines indicates  the number  of the scheme. T, ~ r, sec. 

Fig. 3. Tempera tu re  variation of the heat ing fluids at s t ructure outlet .  The  

number  of the line indicates the number  of the scheme, the channel .  

Fig. 4. Tempera tu re  variation of fluids along s t ructure  channels .  The  fluids 

flow according to scheme 4, r = 6 sec. Line 1 corresponds  to the heated fluid,  

line 2 - to the heat ing fluid. The  figures above the lines indicate the numbers  

of the channels .  L, m. 

channel  walls were made  of steel,  2i = 46.5 W / m 2 / d e g ,  aj = 5 .9 .10  -6  m2/sec.  The  initial  t empera tu re  of the 

s t ructure  was 10~ Wate r  was used as the fluid. Calculat ions were made with al lowance for the tempera ture  

dependence  of the dens i ty  and thermophysical  character is t ics  of water.  These  pa ramete r s  were de t e rmined  by 

interpolat ion of the table values [7 ]. The  mass flow rate of water  is 1200 k g / s e c / m  2. It is a s sumed  that  the pressure  

in the system of channels  is h igher  than that of sa tu ra ted  steam at 7"/= 150~ i.e., phase changes  are  neglected.  

The  time variat ion of the heating and heated liquids at the s tructure outlet  is shown in Figs. 2 and 3. As 

is seen,  as regards  the heat ing of l iquids, a scheme in which cold liquids are flowing counter  to a hot  l iquid (schemes 

2 and 4) is more effective, as in the simple case of liquids flowing in two channels ,  than a scheme with a cocurrent  

flow (schemes 1 and 3). Compar ing  schemes 1 and 3 and 2 and 4, it is per t inent  to note that  at the initial moment  

(r < 2 sec) the t rend of t empera ture  variation of the heated liquid is practically the same,  since at this period the 

influence of the heat ing liquids in channels  kl (scheme 1 ,2 )  and  k2 (scheme 3, 4) is insignif icant .  The  tempera ture  

of the outflowing liquid is mainly affected by heat t ransfer  between channels  k4 and  k5 i ndependen t ly  of their  

lay-out  diagram.  The  schemes with counter  and  cocurrent  flows differ  considerably .  In this period,  heat ing of a 

cold liquid in the outlet  channel  proceeds for compound schemes in the same way as in a s imple sys tem (following 

a scheme of counter  or  cocurrent  flow). However at the next  moments  of t ime (2 <_ r _< 4 sec) hea t ing  of the liquids 
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in channels k l  and k2 plays a more significant role. This, in particular, indicates an abrupt increase in tb- slope 

of the curve that illustrates the temperature variation of a liquid flowing according to scheme 3. 

The time dependence of the temperature of hot liquids at the structure outlet is shown in Fig. 3 for schemes 

1 and 2. Noteworthy is the nonmonotonic character of its variation. At the initial moment (r _< 2 sec) cooling of 

the hot liquid by the cold one prevails. It should be noted that liquid cc,oling in the system under consideration 

proceeeds in the same way as in a simple system (the corresponding curves for these systems practically coincide). 

Then a rise in the cold-liquid temperature over the entire length of the channels (Fig. 4) causes considerably less 
cooling of the hot liquid. 

The temperature variation of the liquids along the channels at r = 6 sec for scheme 4 is shown in Fig. 4. 

In conclusion, it should be noted that though the scheme of the considered structures is rather complicated, 

the algorithm is possibilities are not exhausted by the examples discussed. These algorithms are of a sufficiently 

general nature and can be used for calculation of the thermal states of structures that are of practical interest. 

N O T A T I O N  

r, time; T, temperature; 2, thermal conductivity of the materials of structure layers; e, specific power of 

the heat sources (sinks) of the materials of the structure layers; r and z, coordinates in the transverse and 

longitudinal directions; v, parameter designating the coordinate system, ~ R - ,  co, coefficients of generalized 

nonideal contact; T[, mass-averaged fluid temperature; col, p[, specific heat per unit mass and fluid density at 

temperature 7".:, respectively; a, heat transfer coefficient; u, mean flow rate; G, mass specific flow rate of the fluid; 

6, channel width; L, structure length; p, number of time layer; k, number of structure layers. The subscript j 

indicates the layer number, the superscripts "+" or " - "  refer the parameters "from above" and "from below" of 

joints, respectively. 
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